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Section 11 
Equations with parameters 

Many difficulties arise when solving equations with parameters.  
This is due to many reasons, among them:  
а) insufficiently broad and complete definition of the concept of a parameter;  
б) lack of clear definition of the parameter;  
в) very weak technique for solving equations with parameters. 
The concept of a parameter arose in technology, where it characterizes a 

certain essential property of a parameter (for example, lamp parameters), area, 
phenomena, etc. Then it "migrated" to other sciences, including mathematics, 
where it is treated as another variable in the equation that differs from the one 
whose value needs to be found.  
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that is, a quantity that characterizes, sets the permissible values. 
Solving an equation with parameters means finding all solutions of this 

equation for certain permissible values of parameters. 
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Solution: 
We multiply both sides of the equation by the expression:   :23  axax  
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We express argument x  via parameter :a  
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It is easy to establish at what values of the parameter а the last and naturally given 
equation has no roots - equate the denominator 92 a  to zero, that is ,092 a  

,92 a  .5,4a  
Hence, for 5,4a  .x  
 At the next stage of the solution, we establish at what values of the 
parameter а the equation has roots. This happens when ,5,4a  then 92 a  and the 

equation has one root .
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the multivalued parameter а, then it is necessary to determine those values of this 
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values а, which do not turn the denominators of the original equation into zero, 
that is, for which 02 ax  and .03  ax  
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Solution: 
In this equation х - argument, а and b - parameters. 
Provided that 0a  and 0b  multiply both sides of the equation by the expression: 
    :babxax   
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            ;abxaxbbxaxbaaxbabx   
;22222222 babaabxaxabaxbxbbxbaxababxab   

Let us group the terms of the equation so that it is possible to take out of the 
brackets from one group ,2x  on the other - х and the third group would be without 
an argument, that is, form a quadratic equation: 
    ;022222222  baabbaabxaxbxabxabxabxabaxbx  
       ;1024222  baabxabbaxba  

      024222  baabxabbaxba . (А) 
For a quadratic equation to exist, it is necessary that its leading coefficient is 
nonzero, that is 0 ba :  

1). Let the .ab   Then the original equation takes the form ;
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axax  ;02 x   0x  root of the equation. 

2). Let the 0 ba , i.e ,ab   then the equation (А) – square equation: 
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Answer: if , ,0 , abbba   then ;
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If ,ab   then ;0x  If 0a  or ,0b  then .x  
Let us show the application of equations with parameters to solving, for example, 
geometric problems:  
The sum of the hypotenuse and one of the legs is m , and the sum of the 
hypotenuse and the other leg is n . 
Find the hypotenuse. 

Solution: 
Let the х – the hypotenuse of the triangle, then . , nxbmxa    
From here . , xnbxma   
By the Pythagorean theorem, we have: 

;222 bax       ;222 xnxmx   
Because the 0 ,0 ,0  xba  as the lengths of the segments,  
then .0  ,0  ,0 , nxmxnnm   
We solve the resulting equation: 
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    ;02 222  nmxnmx  
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As ,08 mn  then the equation has two roots: 
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Solution: 

We square both sides of the equation, we get: 
    ;22 baxbxbxaxax   

    ,02  bxax      .0 bxax  
After squaring, we have: 
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It is necessary to determine at which а and b 1x  and 2x  will be the roots of this 
equation. 
Substitute а  and b  into the equation: 

;2 baabaaa   .0 baba    
The left and right sides of the equation make sense when ,0 ba   ,1:  ba  

.ba    
Therefore, for ba    ax  root of the equation. 

 bxbaabababbabbbab   ,  ,0  , ,2  root of the 
equation. 
Answer: at ;  , ахba  at .  , bхba   .2caa xx    

Solution: 
.1 ,0  aa       , ;11 ;0 a  .Rc  

These are exponential equations, х  argument, а  and с – parameters. 
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Formed a quadratic equation .xa  We denote .ta x   
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Taking into account the substitution, we have a set of equations: 
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Let us find out at what values of the parameter С the set as well as the original 
equation have solutions. 
At 1c  totality has no solutions. 
At 1с  totality has two solutions: 
    ;1log  ;1loglog 2
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   . ;11 ;0 a  Reduce all the logarithms of the equation to the base а: 
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Then the original equation will have the form: 
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University applicants are often offered equations with parameters that are difficult 
to solve using the above method. Here the following way can come to the rescue: 
consider the parameter as an argument, and consider the variable as a coefficient. 

For example:  
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Solution: 
Parameter n  is considered a variable, and the variable х  coefficient.  
We rewrite this equation as follows: 
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Let's use the main property of proportion: 
        ;2223222 22  xxnxxxnnxxxx  
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      ;23242 222  xnnxxnxxx  
    ;26242 2322  xnxxnnxnxxx  
  ;1264242 2222322 nxnxxnxnnxnxxx   
  ;416262 2222322 xnnxxnnxnxxx   
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  ;241662 2222322 xnxnnxnxnxxx   
    ;166242 2322222 nxnxnxxnxnxx   
      ;166222 232222 nxxxnxxxx   

      .0216622 222322  xxnxxxnxx  
A quadratic equation was formed with respect to n. 
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A lot of equations with parameters are offered to applicants to universities, which 
are very difficult to solve in the traditional way. The work is greatly facilitated by 
the technique, which consists in the fact that the parameter is considered an 
unknown variable, and the unknown is considered a coefficient. This technique is 
especially rational when the degree of the equation is higher than two.. 
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This is an equation of the fourth degree. Let's apply this technique:  
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Let's rewrite this equation as quadratic with respect to т: 
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In some equations, it is advisable to introduce the parameter ourselves in order to 
facilitate the process of solving: 
      .0134131
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Converting the expression in the third parentheses: 
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Let's introduce the parameter .13 t  
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variable .х  
It is advisable to solve it in the previous way: t  considered as a variable, and x  as a 
coefficient. 
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Considering that ,13 t  we have a new set of equations: 
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95

32





m

mx
x  at 8,1m  and 18m  .x  

 
 

.0
4

22












ba

ab

ax

bx

bx

ax   

Answer: at ,0  ,0  ,  baba  then ;
2

22

a

ba
x


  .

2

22

b

ba
x


  

If ,0  ,0  ba  then ;2ax    
If ,0  ab  then ;0x   
If ,0b  or ,0a  then .x  
 
 

 
.

4

32

2

1

2

1
32 xx

n

xxnxn 








  Answer: at .  ,0  xn  

at ;2 ;2  ,0 21  nxnxn  
at ;2 ;2  ,1 21  nxnxn  
at .2 ;2  ,1 21  nxnxn  
 
 

.01a2 223  axaxx    

Answer: at   ;  1 ;3  xa  at 3a  and 1a  ;
2

1 a
x


  at      ;13 ;a  

.321 2  aaax  
 
 

  .1

11





xa

a

a
a   

Answer: at 1a  and 0a  ;
1

2





a

a
x  at 1a     ; ;11 ; x at 1a  and 

0a .x  
 
 
   .13

712



x

aa

xa  Answer: at 2a  and 0a  ;
2

37

a

a
x




  at 0a  and 2a  .x  

 
 

  .
2

52

2

3

xaxa

a





   

Answer: at 3a  and 2a  and 5,0a   ;
3

12





a

a
x  at ,3a  ,2a  .  5,0  xa  

 
 



11 
 

.
1

1

c

a

x

x



  Answer: at 0 ca  and 0c  ;

ca

ca
x




  at ,ca   0c  .x  

 
 

.
9

1

4

5

axax 



 Answer: 

a

a
x





45

45  at 45a  and ;6a  at 5,4a  and 6a  .x  

 
 

.
6

1
1

6

1

1

1





 xx
  

Answer: ,11  bx  
1

2
2 


b

b
x  at ,1b  ,0b  ;1b  x  at .0b  

 
 

 
.

4

32

2

1

2

1
32 xx

n

xxnxn 








 

Answer: 

. ,0

;2 ;2 ,1 ,022 ,02

;2 ;2 ,1 ,022 ,02

;2 ;2 ,0 ,02 ,0

21

21

21







xn

nxnxnnx

nxnxnnx

nxnxnnx

 

 
 
 
 
 
 


